a^2+5=63

Simple and best practice solution for a^2+5=63 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+5=63 equation:



a^2+5=63
We move all terms to the left:
a^2+5-(63)=0
We add all the numbers together, and all the variables
a^2-58=0
a = 1; b = 0; c = -58;
Δ = b2-4ac
Δ = 02-4·1·(-58)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{58}}{2*1}=\frac{0-2\sqrt{58}}{2} =-\frac{2\sqrt{58}}{2} =-\sqrt{58} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{58}}{2*1}=\frac{0+2\sqrt{58}}{2} =\frac{2\sqrt{58}}{2} =\sqrt{58} $

See similar equations:

| 14x+10=206 | | 2(w-5)-6w=10 | | 8x+28=x-25 | | 6+4u=u | | 1/5+3/10+3/10+n=1 | | 1/4x+3=3 | | -4.53m-3.36=5.7 | | 4=0.10x+0.4 | | v2+5=6 | | 9x+2(3x-5)=7(3x-6) | | -{x}{7}+5=4− | | 6x+(-7)=-61 | | -207-7=2x+117 | | 9n+2n−4n−n=18 | | 2/15x-9/10=2/3 | | 20(x)=60 | | 4x−5=7x+13 | | 3x+2x+3x+2x+-25+4x+-25+4x+-11+x+6+-11+x+6=360 | | (2x+30)+(3x+1)=180 | | (2x+5)+(x-3)-(x-6)=0 | | (2x-1)/9=x+1 | | 16=-7y+5(y+6) | | -83+5x=25+x | | -12x-9=27 | | 5x+3=5(x-12) | | (5x-7)+(6x)=180 | | (5)1/5+(1)3/10(x)=13 | | x−13=26 | | -5(6n=6)=30 | | -3.2=9.3+w÷5 | | x+4^3=400 | | (5x-7)=(6x) |

Equations solver categories